
ControlZ 1.2 Custom Control Library
User Manual

C. van Zwynsvoorde.
E-Mail: cvzwynsv@vmprofs.estec.esa.nl

Table of contents
1. Overview
2. Scaler
3. Dial
4. Tuner
5. Combo box
6. List box
7. Static Text
8. Static Link
9. How to register

1. Overview
ControlZ is a custom control library (DLL).
It basically aims at making developers job easier.
It is Borland's Resource WorkShop 1.01+ compliant.

That means you can customize the controls and use them directly with
Borland's Resource WorkShop. To do this you need to select Options | Install
Control Library when editing a dialog box. If you are not a Borland user, you
can still use the ControlZ.DLL at run-time but will probably experience
problems if trying to use it interactively in your resource editor. In that case
you might want to let me know (see the at end this file).

Currently, 7 types of controls have been implemented:
- an analogue scaler,
- an analogue dial,
- an analogue tuner,
- a new type of hiererchic combo-box,
- a new type of hierarchic list-box with horizontal (caption) scrolling,
- an extended static text control,
- an extended arrowed link static control.

ControlZ has been designed with the intention of putting more power in the
DLL and less in your application. The controls have indeed a variety of options
with default behaviours and even built-in "demo" capabilities. Hence the
library can be used for two purposes:
1. providing powerful controls to your application, and
2. making models of your future applications that still appear to do
something. You do that only by interactively defining the resources in your
resource editor. It makes you save time at this stage were you are often in a
rush to get something to show in order to get funds for your future application.

Remember ControlZ.DLL is not a VBX ! Thus it has no complicated tricks to
get it working with C and the resource editor and/or compiler. Also this means
you may expect it to run on future versions of Windows (which is not sure for
VBX controls).

The ControlZ.DLL that comes in the package (usually controlz.zip) is fully
operational. You will only get some "unregistered copy" reminders if you are
not registered. It is associated with a header file called ControlZ.H and the on-
line documentation contained in the ControlZ.HLP and ControlZ.WRI files.
The WRI file has the same contents as the HLP file but can be more easily
printed.

- 2 -

2. Scaler

Class Name:
The class name is "CZScaler"

Sizing:
When resizing, the control will try to keep the things at their best place. That
is:
1. The scaler groove will occupy all the available horizontal space.
2. The groove will be kept at the bottom.
3. The counter will be placed at the top-right corner
4. The caption will occupy the remaining place in the top-left corner
(possibly being wrapped on several lines).

You should be aware that making the control too small will result in some
overlapping.

Font:
The control uses the same font as the parent window except it is not bold. In
order to get this effect, you must instruct the parent window (usually the dialog
box) to use a font that supports this selection, which the default font
(Fixedsys) does not. Borland suggests you design your dialog boxes with the
Arial 8 font.

The caption text will appear in blue.

In the current version, there is no way to change the text color and/or font.
The WM_SETFONT message will have no effect. Still WM_GETFONT works fine.

Styles:

- 3 -

The scaler control supports the following styles, which can also be selected
from the style dialog box shown above:

CZSS_CAPTION or CZSS_NOCAPTION: indicates whether the control consists
only of the scaler with no counter and caption. Note: if you want no caption
but still the counter, just make the caption string empty.

CZSS_TYPELONG or CZSS_TYPEDOUBLE: indicates whether the scaler will
use variables of type (long) or (double) in the C coding.

CZSS_SLIDER_0 to CZSS_SLIDER_9: indicates the kind of slider that should
be used.

CZSS_TICKS_NORMAL, CZSS_TICKS_RAISED or CZSS_DUG: indicates the
style used for the graduations.

Messages:
WM_SETFONT:
Will have no effect.

WM_GETFONT and WM_SETTEXT:
As expected.

CZM_SETRANGEMIN and CZM_SETRANGEMAX:
Used at any time to set the minimum and maximum values allowed for the
counter. If this results in the current position to be outside the range, then the
position will be corrected too. You can't set a min value of more that the

- 4 -

current max value. You can't set a max value of less than the current min
value.
wParam = NULL
(LONG)lParam = min or max value if CZSS_TYPELONG.
*((double FAR *)lParam) = min or max value if CZSS_TYPEDOUBLE.
return value = NULL

CZM_GETRANGEMIN and CZM_GETRANGEMAX:
Used at any time to retrieve the minimum and maximum valued allowed for
the counter.
wParam = NULL
(LONG FAR *)lParam = pointer to the returned value if CZSS_TYPELONG.
(double FAR *)lParam = pointer to the returned value if CZSS_TYPEDOUBLE.
return value = min or max value if CZSS_TYPELONG.
return value = NULL if CZSS_TYPEDOUBLE.

CZM_SETINC:
Used at any time to set the increment, that is the value that will be added to or
subtracted from the current positions when a button is pressed. Negative and
positive values are equivalent: only the absolute value is taken into account.
wParam = NULL
(LONG)lParam = increment value if CZSS_TYPELONG.
*((double FAR *)lParam) = increment value if CZSS_TYPEDOUBLE.
return value = NULL

CZM_GETINC:
Used at any time to retrieve the value of the increment.
wParam = NULL
(LONG FAR *)lParam = pointer to the returned value if CZSS_TYPELONG.
(double FAR *)lParam = pointer to the returned value if CZSS_TYPEDOUBLE.
return value = increment value if CZSS_TYPELONG.
return value = NULL if CZSS_TYPEDOUBLE.

CZM_SETPOS:
Used at any time to set the position of the counter (and the slider). This is
relative to the specified range (see before). Values outside the allowed range
are truncated to either the minimum or maximum acceptable value.
wParam = NULL
(LONG)lParam = position value if CZSS_TYPELONG.
*((double FAR *)lParam) = position value if CZSS_TYPEDOUBLE.
return value = NULL

CZM_GETPOS:
Used at any time to retrieve the current position of the counter.
wParam = NULL
(LONG FAR *)lParam = pointer to the returned value if CZSS_TYPELONG.

- 5 -

(double FAR *)lParam = pointer to the returned value if CZSS_TYPEDOUBLE.
return value = increment value if CZSS_TYPELONG.
return value = NULL if CZSS_TYPEDOUBLE.

CZM_INCPOS:
Used at any time to either increase or decrease the current position by an
amount called the increment (see CZM_SETINC). If this would result in the
position being outside of the allowed range, then the position will be truncated
to either the minimum or maximum acceptable value. Sending this message is
equivalent to pressing the buttons at the left and right of the control. As far as
the CPU allows it, the buttons generate 20 CZM_INCPOS messages per
second.
wParam = TRUE for increment. FALSE for decrement.
lParam = NULL
return value = NULL

Notification Messages:
CZN_POSCHANGE:
Sent back to the parent window (usually the dialog box) whenever the position
has changed.
iMessage = WM_COMMAND
wParam = control window handle
lParam = MAKELONG(control id, CZN_POSCHANGE)
return value = not used

Default Behaviour:
The default style is CZSS_CAPTION | CZSS_TYPELONG |
CZSS_SLIDER_0 | CZSS_TICKS_DUG.
The default caption is "record:".
The default range is 0 to 100.
The default increment is 1.

- 6 -

3. Dial

Class Name:
The class name is "CZDial"

Sizing:
When resizing, the control will try to keep the things at their best place. That
is:
1. The counter will be horizontally centred, at the bottom.
2. The caption (if any) will be at the top, possibly occupying several lines.
3. The dial will try to occupy the remaining place. Still it will be kept
circular, bottom aligned and horizontally centred.

You should be aware that making the control too small will result in some
overlapping.

Font:
The control uses the same font as the parent window except it is not bold. In
order to get this effect, you must instruct the parent window (usually the dialog
box) to use a font that supports this selection, which the default font
(Fixedsys) does not. Borland suggests you design your dialog boxes with the
Arial 8 font.

The caption text will appear in blue.

In the current version, there is no way to change the text color and/or font.
The WM_SETFONT message will have no effect. Still WM_GETFONT works fine.

Styles:

- 7 -

The dial control supports the following styles, which can also be selected from
the style dialog box shown above:

CZDS_CAPTION or CZDS_NOCAPTION: indicates whether the control consists
only of the dial with no counter and caption. Note: if you want no caption but
still the counter, just make the caption string empty.

CZDS_TYPELONG or CZDS_TYPEDOUBLE: indicates whether the dial will use
variables of type (long) or (double) in the C coding.

CZDS_SLIDERSTART_0 to CZDS_SLIDERSTART_15: specifies the color to
be used for the slider when it is at the minimum position.

CZDS_SLIDEREND_0 to CZDS_SLIDEREND_15: specifies the color to be
used for the slider when it is at the maximum position.

For each position between the minimum and maximum, the slider will be
affected a color derived from those two end-colors by a linear extrapolation.
That allows you to animated the slider for example from blue to red (cold to
hot!). If you don't want it to be animated, just specify the same color for both
ends.

In ControlZ, 16 predefined colors are used, coded from 0 to 15. To minimize
differences that might occur when moving from one hardware configuration to
the other, we don't rely on the system colors but define a proprietary 16-colors
palette out of the most commonly used colors. Still it is most likely to just
correspond with your system colors. Colors are coded as follows:

0 = black 1 = dark blue 2 = dark green 3 = dark red
4 = dark yellow 5 = dark pink 6 = medium blue 7 = light gray

- 8 -

8 = dark gray 9 = blue 10= green 11 = red
12 = yellow 13 = pink 14 = light blue 15 = white.

CZDS_NEEDLE_0 to CZDS_NEEDLE_15: specifies the needle color.

CZDS_TICKS_0 to CZDS_TICKS_3: indicates the style used for the
graduation marks. There are four of them, figuring colored, raised or dug
small pyramids.

Messages:
WM_SETFONT:
Will have no effect.

WM_GETFONT and WM_SETTEXT:
As expected.

CZM_SETRANGEMIN and CZM_SETRANGEMAX:
Used at any time to set the minimum and maximum values allowed for the
counter. If this results in the current position to be outside the range, then the
position will be corrected too. You can't set a min value of more that the
current max value. You can't set a max value of less than the current min
value.
wParam = NULL
(LONG)lParam = min or max value if CZDS_TYPELONG.
*((double FAR *)lParam) = min or max value if CZDS_TYPEDOUBLE.
return value = NULL

CZM_GETRANGEMIN and CZM_GETRANGEMAX:
Used at any time to retrieve the minimum and maximum valued allowed for
the counter.
wParam = NULL
(LONG FAR *)lParam = pointer to the returned value if CZDS_TYPELONG.
(double FAR *)lParam = pointer to the returned value if CZDS_TYPEDOUBLE.
return value = min or max value if CZDS_TYPELONG.
return value = NULL if CZDS_TYPEDOUBLE.

CZM_SETINC:
Used at any time to set the increment, that is the value that will be added to or
subtracted from the current positions when a button is pressed. Negative and
positive values are equivalent: only the absolute value is taken into account.
wParam = NULL
(LONG)lParam = increment value if CZDS_TYPELONG.
*((double FAR *)lParam) = increment value if CZDS_TYPEDOUBLE.
return value = NULL

- 9 -

CZM_GETINC:
Used at any time to retrieve the value of the increment.
wParam = NULL
(LONG FAR *)lParam = pointer to the returned value if CZDS_TYPELONG.
(double FAR *)lParam = pointer to the returned value if CZDS_TYPEDOUBLE.
return value = increment value if CZDS_TYPELONG.
return value = NULL if CZDS_TYPEDOUBLE.

CZM_SETPOS:
Used at any time to set the position of the counter (and the slider). This is
relative to the specified range (see before). Values outside the allowed range
are truncated to either the minimum or maximum acceptable value.
wParam = NULL
(LONG)lParam = position value if CZDS_TYPELONG.
*((double FAR *)lParam) = position value if CZDS_TYPEDOUBLE.
return value = NULL

CZM_GETPOS:
Used at any time to retrieve the current position of the counter.
wParam = NULL
(LONG FAR *)lParam = pointer to the returned value if CZDS_TYPELONG.
(double FAR *)lParam = pointer to the returned value if CZDS_TYPEDOUBLE.
return value = increment value if CZDS_TYPELONG.
return value = NULL if CZDS_TYPEDOUBLE.

CZM_INCPOS:
Used at any time to either increase or decrease the current position by an
amount called the increment (see CZM_SETINC). If this would result in the
position being outside of the allowed range, then the position will be truncated
to either the minimum or maximum acceptable value. Sending this message is
equivalent to pressing the buttons at the left and right of the control. As far as
the CPU allows it, the buttons generate 20 CZM_INCPOS messages per
second.
wParam = TRUE for increment. FALSE for decrement.
lParam = NULL
return value = NULL

Notification Messages:
CZN_POSCHANGE:
Sent back to the parent window (usually the dialog box) whenever the position
has changed.
iMessage = WM_COMMAND
wParam = control window handle
lParam = MAKELONG(control id, CZN_POSCHANGE)
return value = not used

- 10 -

Default Behaviour:
The default style is CZDS_CAPTION | CZDS_TYPELONG |
CZDS_SLIDERSTART_9 | CZDS_SLIDEREND_11 | CZDS_NEEDLE_11 |
CZDS_TICKS_0.
The default caption is "Speed:".
The default range is 0 to 100.
The default increment is 1.

- 11 -

4. Tuner

Class Name:
The class name is "CZTuner"

Sizing:
When resizing, the control will try to keep the things at their best place. That
is:
1. The caption (if any) will be at the top, possibly occupying several lines.
2. The two buttons will be placed on above the wheel, and aligned
horizontally with it.
3. The counter (if any) will be placed above the buttons and horizontally
centred.
4. The will try to occupy the remaining place, still being centred
horizontally and bottom aligned.

You should be aware that making the control too small will result in some
overlapping.

Font:
The control uses the same font as the parent window except it is not bold. In
order to get this effect, you must instruct the parent window (usually the dialog
box) to use a font that supports this selection, which the default font
(Fixedsys) does not. Borland suggests you design your dialog boxes with the
Arial 8 font.

The caption text will appear in blue.

In the current version, there is no way to change the text color and/or font.
The WM_SETFONT message will have no effect. Still WM_GETFONT works fine.

Styles:

- 12 -

The tuner control supports the following styles, which can also be selected
from the style dialog box shown above:

CZTS_CAPTION or CZTS_NOCAPTION: indicates whether the control consists
only of the dial with no counter and caption. Note: if you want no caption but
still the counter, just make the caption string empty.

CZTS_TYPELONG or CZTS_TYPEDOUBLE: indicates whether the dial will use
variables of type (long) or (double) in the C coding.

CZTS_WHEELDEPTH_0 to CZTS_WHEELDEPTH_15: specifies the depth of the
wheel, in pixel units. Allowed depths are 0 to 15.

CZTS_MARK_0 to CZTS_MARK_15: specifies the style of the mark. That is the
thing you drag to make the wheel turn. Sixteen styles are predefined, figuring
big or small holes or raised spots, in gray, red, green or blue.

Messages:
WM_SETFONT:
Will have no effect.

WM_GETFONT and WM_SETTEXT:
As expected.

CZM_SETTURN:
Used at any time to set the range covered by one turn of the wheel. Negative
and positive values are equivalent: only the absolute value is taken into
account. If this results in the current position to be outside the range, then the
position will be corrected too.
At the beginning, the counter has value 0. The 0 position always corresponds

- 13 -

to having the mark on the top, in front of the small vertical tick. The tuner
control offers you at the same time precise control on the counter value, and
an unlimited range of values. This is a unique capability and a big
improvement on any type of scaler.
wParam = NULL
(LONG)lParam = turn range if CZTS_TYPELONG.
*((double FAR *)lParam) = turn range if CZTS_TYPEDOUBLE.
return value = NULL

CZM_GETTURN:
Used at any time to retrieve the range covered by one turn of the wheel.
wParam = NULL
(LONG FAR *)lParam = pointer to the returned value if CZTS_TYPELONG.
(double FAR *)lParam = pointer to the returned value if CZTS_TYPEDOUBLE.
return value = min or max value if CZTS_TYPELONG.
return value = NULL if CZTS_TYPEDOUBLE.

CZM_SETINC:
Used at any time to set the increment, that is the value that will be added to or
subtracted from the current positions when a button is pressed. Negative and
positive values are equivalent: only the absolute value is taken into account.
wParam = NULL
(LONG)lParam = increment value if CZTS_TYPELONG.
*((double FAR *)lParam) = increment value if CZTS_TYPEDOUBLE.
return value = NULL

CZM_GETINC:
Used at any time to retrieve the value of the increment.
wParam = NULL
(LONG FAR *)lParam = pointer to the returned value if CZTS_TYPELONG.
(double FAR *)lParam = pointer to the returned value if CZTS_TYPEDOUBLE.
return value = increment value if CZTS_TYPELONG.
return value = NULL if CZTS_TYPEDOUBLE.

CZM_SETPOS:
Used at any time to set the position of the counter (and the slider). This is
relative to the specified range (see before). Values outside the allowed range
are truncated to either the minimum or maximum acceptable value.
wParam = NULL
(LONG)lParam = position value if CZTS_TYPELONG.
*((double FAR *)lParam) = position value if CZTS_TYPEDOUBLE.
return value = NULL

CZM_GETPOS:
Used at any time to retrieve the current position of the counter.
wParam = NULL

- 14 -

(LONG FAR *)lParam = pointer to the returned value if CZTS_TYPELONG.
(double FAR *)lParam = pointer to the returned value if CZTS_TYPEDOUBLE.
return value = increment value if CZTS_TYPELONG.
return value = NULL if CZTS_TYPEDOUBLE.

CZM_INCPOS:
Used at any time to either increase or decrease the current position by an
amount called the increment (see CZM_SETINC). If this would result in the
position being outside of the allowed range, then the position will be truncated
to either the minimum or maximum acceptable value. Sending this message is
equivalent to pressing the buttons at the left and right of the control. As far as
the CPU allows it, the buttons generate 20 CZM_INCPOS messages per
second.
wParam = TRUE for increment. FALSE for decrement.
lParam = NULL
return value = NULL

Notification Messages:
CZN_POSCHANGE:
Sent back to the parent window (usually the dialog box) whenever the position
has changed.
iMessage = WM_COMMAND
wParam = control window handle
lParam = MAKELONG(control id, CZN_POSCHANGE)
return value = not used

Default Behaviour:
The default style is CZTS_CAPTION | CZTS_TYPELONG |
CZTS_WHEELDEPTH_4 | CZTS_MARK_1.
The default caption is "Speed:".
The default range is 0 to 100.
The default increment is 1.

- 15 -

5. Combo box

Class Name:
The class name is "CZCombo"

Sizing:
The default combo-box resizing behaviour has been maintained, with the
addition that a margin has been reserved on the left for the marker. The
marker is the symbol that indicates the presence of section headers.

Font:
The control uses the same font as the parent window except it is not bold. In
order to get this effect, you must instruct the parent window (usually the dialog
box) to use a font that supports this selection, which the default font
(Fixedsys) does not. Borland suggests you design your dialog boxes with the
Arial 8 font.

In the current version, there is no way to change the font. The WM_SETFONT
message will have no effect. Still WM_GETFONT works fine.

The colors (background, foreground selected and unselected) can be
configured. See the styles section.

Styles:

- 16 -

The control's caption (that is the text that is set by the SetWindowText
function), is used as the demo text if the demo checkbox (CZCBS_DEMO) is
selected. Otherwise it is not used.

The combo-box control supports the following styles, which can also be
selected from the style dialog box shown above:

CZCBS_SELECTED_0 to CZCBS_SELECTED_15: specifies the color for the
item strings when selected.

In ControlZ, 16 predefined colors are used, coded from 0 to 15. To minimize
differences that might occur when moving from one hardware configuration to
the other, we don't rely on the system colors but define a proprietary 16-colors
palette out of the most commonly used colors. Still it is most likely to just
correspond with your system colors. Colors are coded as follows:

0 = black 1 = dark blue 2 = dark green 3 = dark red
4 = dark yellow 5 = dark pink 6 = medium blue 7 = light gray
8 = dark gray 9 = blue 10= green 11 = red
12 = yellow 13 = pink 14 = light blue 15 = white.

CZCBS_UNSELECTED_0 to CZCBS_UNSELECTED_15: specifies the color for
the item strings when not selected.

CZCBS_BACKGROUND_0 to CZCBS_BACKGROUND_15: specifies the color for
the combo-box background.

CZCBS_MARKER_0 to CZCBS_MARK_3: specifies the style of the marker. That
is the symbol placed in the left margin. It is used to indicate that the item is

- 17 -

either a section header or a normal item. When you select a section header,
the previously expanded section will collapse and the selected section will
automatically expand to show its dependant items. The marker symbol is
animated to indicate whether a section is currently expanded or not.

CZCBS_SIMPLE or CZCBS_DROPDOWNLIST: specifies whether the combo-
box should comply to the standard CBS_SIMPLE or CBS_DROPDOWNLIST
style. Note that the CBS_DROPDOWN standard style has been abandoned
because its priciple is quite contrary to having an expanding sections
mechanism.

CZCBS_DEMO or CZCBS_NODEMO: specifies whether the control should act as
a demo one. This feature has been added to allow you to design dialog
boxes, run them and already have controls that "do something". That means
that, while being in a preliminary study phase and having programmed
nothing yet, you can show your boss or your customer more that a standard
empty combo-box.

The demo acting consists of generating 26 sections, each expanding to 26
items. This is done by appending letters ('A' to 'Z', then 'a' to 'z') to the
control's caption.

By the time you want to use the control in your real application, you will have
to remove the CZCBS_DEMO style. An alternative would be to delete all the
demo sections after the control's creation (use the CZM_DELETESECTION
message).

Messages:
WM_SETFONT:
Will have no effect.

WM_GETFONT and WM_SETTEXT:
As expected.

CZM_ADDSECTION:
Used at any time to add a section header to the combo-box. The section
header will be appended at the end of the list.
wParam = a unique identifier for the section. You are responsible for providing
this and checking uniqueness. Non uniqueness is not expected to be fatal but
is not "documented". Allowed numbers range from 0 to 65535.
(LPSTR)lParam = section header string.
return value = index of the added string in the list or CB_ERR upon error.

CZM_DELETESECTION:
Used at any time to delete a section, regardless of whether it is currently
expanded or not.

- 18 -

wParam = section identifier as specified in the CZM_ADDSECTION message.
lParam = NULL.
return value = number of remaining strings in the combo-box, or CB_ERR
upon error. Note that the section identifier not being found is not considered
as an error.

CZM_ISSECTION:
Used at any time to determine whether a given string in the list is a section
header or a normal item.
wParam = index of the string in the list.
lParam = NULL.
return value = CB_ERR if an error occurs. Non zero if the wParam'th list item
is a section header. Zero otherwise.

CZM_FILLSECTION:
Used when a CZN_FILLSECTION notification message is received. This is
when a section is about to be expanded and the control needs you to supply
the items associated with it. For that purpose you must send
CZM_FILLSECTION messages back to the control, for each item that belongs
to the section. Note that, when handling the CZN_FILLSECTION notification
message, you should not send messages other than CZM_FILLSECTION.
The section is considered to be filled when you return from the
CZN_FILLSECTION notification message. Any attempt to send
CZM_FILLSECTION messages outside the handling of CZN_FILLSECTION
will have not effect.
wParam = NULL.
(LPSTR)lParam = item's string.
return value = index of the added string in the list, or CB_ERR upon error.

CB_ADDSTRING and CB_INSERTSTRING:
Provided for compatibility with the standard combo-box. You actually can
disable the section mechanism just by adding no section and using those
messages instead. This will make the control to act as a standard combo-box
but will still provide you with the formatting capabilities (colors, etc.).
Using these two messages when you have sections in the combo box, may
produce unpredictable results.

CB_FINDSTRING, CB_GETCOUNT, CB_GETCURSEL,
CB_GETDROPPEDCONTROLRECT, CB_GETDROPPEDSTATE,
CB_GETEDITSEL, CB_GETEXTENDEDUI, CB_GETITEMHEIGHT,
CB_GETLBTEXT, CB_GETLBTEXTLEN, CB_LIMITTEXT,
CB_RESETCONTENT, CB_SELECTSTRING, CB_SETCURSEL,
CB_SETEDITSEL, CB_SETEXTENDEDUI, CB_SHOWDROPDOWN:
As expected.

Notification Messages:
- 19 -

CZN_SELCHANGE:
Sent back to the parent window (usually the dialog box) whenever the item's
selection has changed. Note that selection a section header will not provoke
this message.
iMessage = WM_COMMAND
wParam = control window handle
lParam = MAKELONG(control id, CZN_SELCHANGE)
return value = not used

CZN_FILLSECTION:
Sent back to the parent window (usually the dialog box) whenever a section is
about to be expanded and the control needs you to supply the items that
belong to the section. When receiving this message you should send
CZM_FILLSECTION messages back. (See CZM_FILLSECTION).
iMessage = WM_COMMAND
wParam = section identifier as specified in the CZM_ADDSECTION message.
Watch out: unlike in most notification messages, here wParam is not the
control's window handle.
lParam = MAKELONG(control id, CZN_FILLSECTION)
return value = not used

Default Behaviour:
The default style is CZCBS_SELECTED_9 | CZCBS_UNSELECTED_0 |
CZCBS_BACKGROUND_15 | CZCBS_MARKER_1 | CZCBS_SIMPLE |
CZCBS_DEMO.
The default caption (that is the demo text) is "Demo".

- 20 -

6. List box

Class Name:
The class name is "CZList"

Sizing:
The control implements the following size-related features:
1. The listbox has vertical an horizontal scroll-bars. Those scroll bars will
appear or disappear dynamically whenever they are needed or not.
2. A margin is reserved on the left for the marker symbols. Markers are
used to indicate the presence of section headers.
3. The listbox is handles tabs. By default, tab characters will expand to 8
times the average character with of the current font. Tab positions can still be
set as desired by the LB_SETTABSTOPS message.
4. A caption is present on top of the list. The caption is single-line.
Depending on the style you choose, the caption will or will not scroll
horizontally with the list-box.
5. The listbox completely handles horizontal scrolling, still allowing the
use of tabs. The margin reserved for the markers will be kept fixed.
6. The caption will be (dynamically) removed whenever the caption text is
empty.

Font:
The control uses the same font as the parent window except it is not bold. In
order to get this effect, you must instruct the parent window (usually the dialog
box) to use a font that supports this selection, which the default font
(Fixedsys) does not. Borland suggests you design your dialog boxes with the
Arial 8 font.

In the current version, there is no way to change the font. The WM_SETFONT
message will have no effect. Still WM_GETFONT works fine.

The colors (background, foreground selected and unselected) for the listbox
can be configured. See the styles section.

The caption background and color are not modifiable. The caption text will
- 21 -

appear in black on a raised gray background.

Styles:

The listbox control is much like the combo-box one. It supports the following
styles, which can also be selected from the style dialog box shown above:

CZLBS_SELECTED_0 to CZLBS_SELECTED_15: specifies the color for the
item strings when selected.

In ControlZ, 16 predefined colors are used, coded from 0 to 15. To minimize
differences that might occur when moving from one hardware configuration to
the other, we don't rely on the system colors but define a proprietary 16-colors
palette out of the most commonly used colors. Still it is most likely to just
correspond with your system colors. Colors are coded as follows:

0 = black 1 = dark blue 2 = dark green 3 = dark red
4 = dark yellow 5 = dark pink 6 = medium blue 7 = light gray
8 = dark gray 9 = blue 10= green 11 = red
12 = yellow 13 = pink 14 = light blue 15 = white.

CZLBS_UNSELECTED_0 to CZLBS_UNSELECTED_15: specifies the color for
the item strings when not selected.

CZLBS_BACKGROUND_0 to CZLBS_BACKGROUND_15: specifies the color for
the list-box background.

CZLBS_MARKER_0 to CZLBS_MARK_3: specifies the style of the marker. That
is the symbol placed in the left margin. It is used to indicate that the item is
either a section header or a normal item. When you select a section header,
the previously expanded section will collapse and the selected section will

- 22 -

automatically expand to show its dependant items. The marker symbol is
animated to indicate whether a section is currently expanded or not.

CZLBS_SCROLLCAPTION or CZLBS_FIXEDCAPTION: specifies whether the
caption (if any) should be scrolled horizontally as the list box is scrolled.
As a general design consideration, you are advised to let the caption be
scrollable in case you use tabs in the list-box and so have a multiple column
concept. In that case you will indeed probable wish the column title to be
horizontally aligned with the column itself. If you use no tabs (have only one
column), then you may prefer to keep the caption fixed.

CZLBS_DEMO or CZLBS_NODEMO: specifies whether the control should act as
a demo one. This feature has been added to allow you to design dialog
boxes, run them and already have controls that "do something". That means
that, while being in a preliminary study phase and having programmed
nothing yet, you can show your boss or your customer more that a standard
empty list-box.

The demo acting consists of generating 26 sections, each expanding to 26
items. This is done by appending letters ('A' to 'Z', then 'a' to 'z') to the
control's caption.

By the time you want to use the control in your real application, you will have
to remove the CZLBS_DEMO style. An alternative would be to delete all the
demo sections after the control's creation (use the CZM_DELETESECTION
message).

Messages:
WM_SETFONT:
Will have no effect.

WM_GETFONT and WM_SETTEXT:
As expected.

CZM_ADDSECTION:
Used at any time to add a section header to the combo-box. The section
header will be appended at the end of the list.
wParam = a unique identifier for the section. You are responsible for providing
this and checking uniqueness. Non uniqueness is not expected to be fatal but
is not "documented". Allowed numbers range from 0 to 65535.
(LPSTR)lParam = section header string.
return value = index of the added string in the list or CB_ERR upon error.

CZM_DELETESECTION:
Used at any time to delete a section, regardless of whether it is currently
expanded or not.

- 23 -

wParam = section identifier as specified in the CZM_ADDSECTION message.
lParam = NULL.
return value = number of remaining strings in the combo-box, or CB_ERR
upon error. Note that the section identifier not being found is not considered
as an error.

CZM_ISSECTION:
Used at any time to determine whether a given string in the list is a section
header or a normal item.
wParam = index of the string in the list.
lParam = NULL.
return value = CB_ERR if an error occurs. Non zero if the wParam'th list item
is a section header. Zero otherwise.

CZM_FILLSECTION:
Used when a CZN_FILLSECTION notification message is received. This is
when a section is about to be expanded and the control needs you to supply
the items associated with it. For that purpose you must send
CZM_FILLSECTION messages back to the control, for each item that belongs
to the section. Note that, when handling the CZN_FILLSECTION notification
message, you should not send messages other than CZM_FILLSECTION.
The section is considered to be filled when you return from the
CZN_FILLSECTION notification message. Any attempt to send
CZM_FILLSECTION messages outside the handling of CZN_FILLSECTION
will have not effect.
wParam = NULL.
(LPSTR)lParam = item's string.
return value = index of the added string in the list, or CB_ERR upon error.

LB_ADDSTRING and LB_INSERTSTRING:
Provided for compatibility with the standard list-box. You actually can disable
the section mechanism just by adding no section and using those messages
instead. This will make the control to act as a standard list-box but will still
provide you with the formatting capabilities (colors, caption, horizontal
scrolling, etc.).
Using these two messages when you have sections in the list-box, may
produce unpredictable results.

LB_RESETCONTENT, LB_SETTABSTOPS, LB_FINDSTRING,
LB_GETCOUNT, LB_FINDSTRING, LB_GETCOUNT, LB_GETITEMRECT,
LB_GETITEMHEIGHT, LB_GETCURSEL, LB_GETTEXT,
LB_GETTEXTLEN, LB_DIR, LB_SELECTSTRING, LB_SETCURSEL,
LB_GETSEL, LB_GETTOPINDEX, LB_SETTOPINDEX:
As expected.

LB_GETCARETINDEX, LB_SETCARETINDEX, LB_GETSELCOUNT,
LB_GETSELITEMS, LB_SELITEMRANGE:

- 24 -

Will be ignored because the list-box does not have multiple selection
capability.

Notification Messages:
CZN_SELCHANGE:
Sent back to the parent window (usually the dialog box) whenever the item's
selection has changed. Note that selection a section header will not provoke
this message.
iMessage = WM_COMMAND
wParam = control window handle
lParam = MAKELONG(control id, CZN_SELCHANGE)
return value = not used

CZN_FILLSECTION:
Sent back to the parent window (usually the dialog box) whenever a section is
about to be expanded and the control needs you to supply the items that
belong to the section. When receiving this message you should send
CZM_FILLSECTION messages back. (See CZM_FILLSECTION).
iMessage = WM_COMMAND
wParam = section identifier as specified in the CZM_ADDSECTION message.
Watch out: unlike in most notification messages, here wParam is not the
control's window handle.
lParam = MAKELONG(control id, CZN_FILLSECTION)
return value = not used

Default Behaviour:
The default style is CZLBS_SELECTED_9 | CZLBS_UNSELECTED_0 |
CZLBS_BACKGROUND_15 | CZLBS_DEMO | CZLBS_MARKER_1 |
CZLBS_SCROLLCAPTION.
The default caption (also used for the demo text) is "Demo".

- 25 -

7. Static Text

Class Name:
The class name is "CZText"

Sizing:
The static text control will basically resizes according to the styles
specification (see the styles section). In addition the following general
observations can be made:
1. The text will be split into several lines if necessary.
2. The text will be centred in the direction perpendicular to the writing
direction. For example, normal text (writing left to right) will be centred
vertically.
3. If the text cannot fit in the control's boundaries, some text will be
clipped out, but the string will remain centred as described before.

Note that, as this is a static control, you will probably take care of sizing it
correctly at the first time, when designing the resource.

Font:
The font handling is quite extensive and one of the main purposes of this
control. See further the styles section.

Styles:

- 26 -

The static text control supports the following styles, which can also be
selected from the style dialog box shown above:

CZSTS_TEXTCOLOR_0 to CZSTS_TEXTCOLOR_15: specifies the text color.

In ControlZ, 16 predefined colors are used, coded from 0 to 15. To minimize
differences that might occur when moving from one hardware configuration to
the other, we don't rely on the system colors but define a proprietary 16-colors
palette out of the most commonly used colors. Still it is most likely to just
correspond with your system colors. Colors are coded as follows:

0 = black 1 = dark blue 2 = dark green 3 = dark red
4 = dark yellow 5 = dark pink 6 = medium blue 7 = light gray
8 = dark gray 9 = blue 10= green 11 = red
12 = yellow 13 = pink 14 = light blue 15 = white.

CZSTS_BACKCOLOR_0 to CZSTS_BACKCOLOR_15: specifies the background
color.

CZSTS_LEFT, CZSTS_CENTER or CZSTS_RIGHT: specifies whether the text
should be left-aligned, centred or right-aligned, with respect to the writing
direction. For instance, if the writing direction is upwards, then this will actually
mean bottom-aligned, centred or top-aligned.

CZSTS_RIGHTWARDS, CZSTS_UPWARDS, CZSTS_LEFTWARDS or
CZSTS_DOWNWARDS:
Specifies the writing direction. Rightwards is the normal direction like for
example in this document. Leftwards is upside-down, etc. Note that the text
will always remain centred in the perpendicular direction, no matter even the

- 27 -

size of the control.

CZSTS_UNDERLINE: specifies the (whole) text will be underlined.

CZSTS_BOLD: specifies the (whole) text will appear in bold characters.

CZSTS_ITALIC: specifies the (whole) text will be appear in italic characters.

CZSTS_SMALLCAPS: specifies the (whole) text will appear in upper case
letters. The first letter of each word will be bigger than the others. In this case,
the font size refers to the first letter of each word.
Please note that this style is provided for compatibility with future versions but
is not actually implemented in this version of ControlZ.

Font typeface and size:
There are two ways to specify the font typeface and size:
1. Select in the style dialog box as shown above.
2. Don't use the style dialog box and specify it in the control's caption. In
reality the caption text consists of:

- The font size in points (note: this is the usual unit, used in every
word-processor).
- a '@' character.
- the typeface name.
- another '@' character.
- the text itself.

That is in summary (brackets indicate optional items):
[size@][typeface@]text
If the size and/or the typeface is missing, default values will be substituted,
the default values being Fixedsys, 11.

Messages:
WM_SETFONT:
Will have no effect.

WM_GETFONT:
Will return the default font (usually the same as the dialog box), which is not
the one actually used by the control.

WM_SETTEXT:
As expected. Note that the font size and typeface is expected to make part of
the window text. So be careful with this message. See the styles section.

WM_GETTEXT:
As expected. Note that the font size and typeface usually makes part of the
window text. So be careful with this message. See the styles section.

- 28 -

Notification Messages:
None.

Default Behaviour:
The default style is CZSTS_CENTER | CZSTS_BACKCOLOR_15 |
CZSTS_TEXTCOLOR_0 | CZSTS_RIGHTWARDS.
The default font is Fixedsys, 11pt. Hence no underline, not bold, etc.
The default caption is "Text".

- 29 -

8. Static Link

Class Name:
The class name is "CZLink"

Sizing:
The link will always resize to be as big as the control size allows. That means
both arrows are tangent to the control's edges, whatever the arrow style is.

Font:
The font is not relevant as the control contains no text.

Styles:

The static link control supports the following styles, which can also be
selected from the style dialog box shown above:

- 30 -

CZLS_COLOR_0 to CZLS_COLOR_15: specifies the link color.

In ControlZ, 16 predefined colors are used, coded from 0 to 15. To minimize
differences that might occur when moving from one hardware configuration to
the other, we don't rely on the system colors but define a proprietary 16-colors
palette out of the most commonly used colors. Still it is most likely to just
correspond with your system colors. Colors are coded as follows:

0 = black 1 = dark blue 2 = dark green 3 = dark red
4 = dark yellow 5 = dark pink 6 = medium blue 7 = light gray
8 = dark gray 9 = blue 10= green 11 = red
12 = yellow 13 = pink 14 = light blue 15 = white.

CZLS_START_0 to CZLS_START_15: specifies the style for the start arrow.
The is a choice of 16 arrow shapes, covering the most commonly used
arrows. Special attention has been taken to provide arrows for structure
charts (e.g. 1 to N relations, etc.)

CZLS_END_0 to CZLS_END_15: specifies the style for the end arrow.

CZLS_TLCORNER, CZLS_BRCORNER, CZLS_TRCORNER or
CZLS_BLCORNER:
Specifies that the link should be curved to either the top-left, bottom-right, top-
right or bottom-left corner.

CZLS_RECT, CZLS_ELLIPTIC, CZLS_ROUNDRECT or CZLS_DIRECT:
Specifies the kind of curving that is to be used. Namely a quarter of either a
rectangle, an ellipse or a rounded rectangle.
The CZLS_DIRECT style implies that there is no curving. In that case,
depending on the previous style choice, the result is as follows:
CZLS_TLCORNER | CZLS_DIRECT: gives an horizontal line, aligned at the
top of the control.
CZLS_TRCORNER | CZLS_DIRECT: gives a vertical line, aligned at the left of
the control.
CZLS_BLCORNER | CZLS_DIRECT: gives a diagonal line from the bottom-
left to the top-right corner.
CZLS_BRCORNER | CZLS_DIRECT: gives a diagonal line from the top-left to
the bottom-right corner.
To summarize and make those special cases easier to handle, the following
styles have been defined:
#define CZLS_HLINE (CZLS_TLCORNER | CZLS_DIRECT)
#define CZLS_VLINE (CZLS_TRCORNER | CZLS_DIRECT)
#define CZLS_DIAGUP (CZLS_BLCORNER | CZLS_DIRECT)
#define CZLS_DIAGDOWN (CZLS_BRCORNER | CZLS_DIRECT)

Pen size:
- 31 -

The pen size is specified in pixel units. There are two ways to do that:
1. Use the style dialog box as shown above.
2. Don't use this dialog box and specify the pen size is specified as the
window text. In reality this is also the case when using the style dialog box.

There are a few things that you should keep in mind when specifying the pen
size:
- a size of 0 is not allowed an will be replace by 1 automatically.
- the pen size should be an integer (do not use scientific notation, etc.).
- the pen size should be positive, although only the absolute value will
be taken into account
- the pen size will be considered modulo 100. That means 101 is
equivalent to 1.
- The arrows will be scaled proportionally to the pen size. Hence having
a pen size bigger than a few pixels will result in sizing problems.

Messages:
WM_SETFONT:
Will have no effect.

WM_GETFONT:
Will return the default font (usually the same as the dialog box).

WM_SETTEXT:
As expected. Note that the window text is used to specify the pen size. So be
carefull with this message. See the styles section.

WM_GETTEXT:
As expected. Note that the window text is used to specify the pen size. So be
carefull with this message. See the styles section.

Notification Messages:
None.

Default Behaviour:
The default style is CZLS_TLCORNER | CZLS_ELLIPTIC |
CZLS_COLOR_0 | CZLS_START_0 | CZLS_END_1.
The default caption (hence the pen size) is "1".

- 32 -

9. How to register
The registration is 50 NLG (Dutch Guilders, < $30). See the register.txt
file for more details. You will get a registration name and a password as soon
as I have notification of payment from the bank. Note that there may be some
delay between the time you pay and the time I receive notification of that.
This is a per-copy price. Thus if you will have copies of ControlZ on N stations
in your orgranisation, then please register N copies.

Commercial use of ControlZ
If you intend to make commercial use of ControlZ, you may want either to:
- register as many copies as needed, or
- get the source code, in which case you should contact me first.

- 33 -

